skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee_이, Young_Sun 영선"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present a new method for identifying Galactic halo substructures accreted from dwarf galaxies by combining metallicity distribution functions (MDFs) with orbital parameters. Using apogalactic distance–orbital phase space, we assume that the MDF peak of a substructure reflects its progenitor’s chemical signature. We test this approach with two Galactic potentials (St a ̈ ckel and McMillan) and find consistent results. Our sample consists of retrograde halo stars with low orbital inclinations and intermediate eccentricities (0.5 < e≤ 0.7), drawn from Sloan Digital Sky Survey and Large sky Area Multi-Object Fiber Spectroscopic Telescope spectroscopy combined with Gaia DR3 astrometry. We identify four distinct low-inclination retrograde substructures (LRS 1, LRS 2, LRS 3, LRS 4) with MDF peaks at [Fe/H] = −1.5, −1.7, −1.9, and −2.1, respectively; LRS 3 is newly discovered. Further analysis reveals an additional stream (LRS 2B) with [Fe/H] = −2.3 embedded within LRS 2; the remaining LRS 2 stars (LRS 2A) are associated with Sequoia. LRS 1 is likely linked to Thamnos 2 and Arjuna, and LRS 4 is likely linked to I’itoi. Comparison with the ED-2 stream suggests that LRS 2B is chemically distinct, but high-resolution spectroscopy is required to confirm whether they originate from separate progenitors. Our MDF-based approach demonstrates the utility of chemodynamical space for uncovering halo substructures, while highlighting caveats such as metallicity gradients and redshift evolution of the mass–metallicity relation, which may blur the mapping between MDF peaks and progenitors. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026
  2. Abstract We report the discovery of a new subclass of carbon-enhanced metal-poor (CEMP) stars, characterized by high absolute carbon abundances (A(C) > 7.39) and extremely low metallicity ([Fe/H] ≤ –3.1) but notably lacking enhancements in neutron-capture elements, thus falling under the CEMP-no category. This population emerged from a detailed analysis of low-resolution spectroscopic data obtained from the Sloan Digital Sky Survey and the Large Sky Area Multi-Object Fiber Spectroscopic Telescope, where the observed frequency trends with the decreasing metallicity of CEMP-s(s-process-enhanced) and CEMP-no (no neutron-capture enhanced) stars deviated from established expectations. In contrast to earlier findings, we observe a rise in high-A(C) stars below [Fe/H] = −3.1, which we interpret as a distinct group not accounted for in traditional CEMP classifications. Following the Yoon–Beers group classification, we define these stars as Group IV. Statistical modeling confirms their presence as a separate peak in theA(C) distribution, and available radial velocity data suggest that about 30% of Group IV stars may be binaries, indicating possible binary-related formation mechanisms. This discovery challenges the current CEMP-no star formation pathways and implies the existence of alternative or hybrid enrichment scenarios in the early Universe. High-resolution spectroscopic follow-up of Group IV candidates will be crucial for identifying their progenitors and understanding their evolutionary implications. 
    more » « less
    Free, publicly-accessible full text available September 25, 2026